2012安徽数学)20.如图,点F1(-c,0),F2(c,0)分别是椭圆C:x^2/a+y^2/b^2=1(a>b>0)2012安徽数学)20.如图,点F1(-c,0),F2(c,0)分别是椭圆C:x^2/a+y^2/b^2=1(a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线x= a^2/c于点Q.(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;(Ⅱ)证明:直线PQ与椭圆C只有一个交点.
问题描述:
2012安徽数学)20.如图,点F1(-c,0),F2(c,0)分别是椭圆C:x^2/a+y^2/b^2=1(a>b>0)
2012安徽数学)20.如图,点F1(-c,0),F2(c,0)分别是椭圆C:x^2/a+y^2/b^2=1(a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线x= a^2/c于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.
答