如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)DM⊥AM.

问题描述:

如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:

(1)AM平分∠DAB;
(2)DM⊥AM.

(1)AM平分∠DAB.证明:过点M作ME⊥AD,垂足为E,∵DM平分∠ADC,∴∠1=∠2,∵MC⊥CD,ME⊥AD,∴ME=MC(角平分线上的点到角两边的距离相等),又∵MC=MB,∴ME=MB,∵MB⊥AB,ME⊥AD,∴AM平分∠DAB(到角的两边...
答案解析:(1)过点M作ME⊥AD,垂足为E,先求出ME=MC,再求出ME=MB,从而证明AM平分∠DAB;
(2)利用两直线平行同旁内角互补可得∠1+∠3=90°,所以两直线垂直
考试点:角平分线的性质.
知识点:本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.