如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正确的是______.

问题描述:

如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正确的是______.

①∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,∴Rt△ADC≌Rt...
答案解析:①根据BC=AC,∠ACB=90°可知∠CAB=∠ABC=45°,再由AD平分∠BAC可知∠BAE=∠EAF=22.5°,在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,可求出∠EAF=∠FBC,由BC=AC可求出Rt△ADC≌Rt△BFC,故可求出AD=BF;
②由①中Rt△ADC≌Rt△BFC可直接得出结论;
③由①中Rt△ADC≌Rt△BFC可知,CF=CD,故AC+CD=AC+CF=AF,∠CBF=∠EAF=22.5°,在Rt△AEF中,∠F=90°-∠EAF=67.5°,根据∠CAB=45°可知,∠ABF=180°-∠EAF-∠CAB=67.5°,即可求出AF=AB,即AC+CD=AB;
④由③可知,△ABF是等腰三角形,由于BE⊥AD,故BE=

1
2
BF,在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF;
⑤由③可知,△ABF是等腰三角形,由于BE⊥AD,根据等腰三角形三线合一的性质即可解答.
考试点:全等三角形的判定与性质;等腰三角形的性质.
知识点:本题考查的是全等三角形的判定与性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.