解释一下从ax²+bx+c=0(a≠0)到x=[-b±√(b²-4ac)]/2a的详细过程,

问题描述:

解释一下从ax²+bx+c=0(a≠0)到x=[-b±√(b²-4ac)]/2a的详细过程,

ax²+bx+c=0
ax²+bx=-c
a[x²+(b/a)x]=-c
a[x²+(b/a)x+(b/2a)²-(b/2a)²]=-c
a[x²+(b/a)x+(b/2a)²]-(b²/4a)=-c
a[x+(b/2a)]²=(b²/4a)-c
a[x+(b/2a)]²=(b²-4ac)/4a
[x+(b/2a)]²=(b²-4ac)/4a²
x+(b/2a)=±√[(b²-4ac)/4a²]
x+(b/2a)=±[√(b²-4ac)]/2a
x=-(b/2a) ± [√(b²-4ac)]/2a
x=[-b ± √(b²-4ac)]/2a