y=sinx+cosx+2sinxcosx+2(x∈(0,π))的值域是

问题描述:

y=sinx+cosx+2sinxcosx+2(x∈(0,π))的值域是

令sinx+cosx=t,t=√2sin(x+π/4),x+π/4属于(π/4,5π/4)所以,t∈[-1,√2](sinx+cosx)^2=t^2=1+2sinxcosx 2sinxcosx=t^2-1y=t^2+t+1 =(t+1/2)^2+3/4t最大值=3+√2 最小值3/4即值域是[3/4,3+根号2]...