设F(x)对一切x,y属于(0,正无穷)均有F(xy)=F(x)+F(y)且X>1时横有F(x)>0

问题描述:

设F(x)对一切x,y属于(0,正无穷)均有F(xy)=F(x)+F(y)且X>1时横有F(x)>0
求1 F(1)的值
2 证明F(X)在(0,正无穷)单调递增
3 如果F(0.5)=-1求F(2)的值并解不等式F(X+1)+F(X-1分之1)>1

1
f(x)=f(1*x)=f(1)+f(x)
f(1)=0
2
2、证明:令x2>x1 x1,x2属于(0,正无穷)
则 x2/x1 >1
F(x1x2/x1)=F(x1)+F(x2/x1)
F(x2)= F(x1)+F(x2/x1)
F(x2)- F(x1)=F(x2/x1)
x2/x1 >1
所以:F(x2/x1)>0
F(x2)- F(x1)>0
f(x+1)+f(1/(x-1))>f(2)
f((x+1)/(x-1))>f(2)
(x+1)/(x-1)>2
x+1>2x-2
x