已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为______.
问题描述:
已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为______.
答
由三视图可得,这是一个四棱锥
底面是一个上下底分别为2和4,高为2的直角梯形,棱锥高为2.
故V=
×1 3
×(2+4)×2×2=4,1 2
故答案为:4
答案解析:由已知判断出该几何体是一个底面为直角梯形,高为2的四棱锥,根据底面上底为2,下底为4,高为2,计算出底面积,然后代入棱锥的体积公式,即可得到答案.
考试点:由三视图求面积、体积.
知识点:本题考查的知识点是由三视图求体积,其中根据三视图判断几何体的形状及相关棱长的长度是解答的关键.