问几道数学的不等式问题1.已知a<b<c且a+b+c=0,则b^2-4ab 0(填>或<或≤或≥)2.函数y=log2[x^2/(x-1)]的值域为 (2为底,x^2/(x-1)为真数)3.设a,b∈R+,求证a^a·b^b≥a^b·b^a(作商法)
问题描述:
问几道数学的不等式问题
1.已知a<b<c且a+b+c=0,则b^2-4ab 0(填>或<或≤或≥)
2.函数y=log2[x^2/(x-1)]的值域为 (2为底,x^2/(x-1)为真数)
3.设a,b∈R+,求证a^a·b^b≥a^b·b^a(作商法)
答
1、b^2-4ac=(-a-c)^2-4ac=a^2-2ac+c^2=(a-c)^2>02、x^2/(x-1)>0x>1设x-1=t>0,则x=1+ty=log2[(t^2+2t+1)/t]=log2(t+1/t+2)≥log2(2+2)=2值域为[2,+∞)3、a^a·b^b/(a^b·b^a)=(a/b)^a·(b/a)^b=(a/b)^(a-b)1)当a>b>0...