已知一直线经过△ABC的重心G,且分别交边CA,CB于P,Q亮点,若CP/CA=3/5,求:CQ/CB能用向量的方法做出来麽?
问题描述:
已知一直线经过△ABC的重心G,且分别交边CA,CB于P,Q亮点,若CP/CA=3/5,求:CQ/CB
能用向量的方法做出来麽?
答
3/4
延长AG交BC于D,D 是BC的中点.
延长BG交AC于E,E是AC的中点.
假设S△DCG=1
那么很容易算出S△AGP=4/5,S△GPE=1/5
设GQ/GP=n
S△GBQ/S△GPE=(BG×GQ)/(GP×GE)=2n
S△GBQ=2n/5
S△GDQ/S△GAP=(GQ×GD)/(GA×GP)=n/2
S△GDQ=2n/5
所以S△GBQ=S△GDQ
Q是BD的中点.
CQ/CB =3/4
答
设A(x1,y1),B(x2,y2),C(x3,y3),重心O(0,0),则有x1+x2+x3=0,y1+y2+y3=0因为AP:PC=2:3,点P的坐标为Xp=(x1+2/3*x2)/(1+2/3),Yp=(y1+2/3*y2)/(1+2/3),设BQ:QC=m,则点Q的坐标为Xq=(x2+m*x3)/(1+m),Yq=(y2+m...