如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC于点Q.试判断△APQ的形状,并证明你的结论.

问题描述:

如图,在△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P.交AC于点Q.试判断△APQ的形状,并证明你的结论.

△APQ是等腰三角形.
证明:∵∠QDB=∠DQC+∠C,∠PDC=∠B+∠P,
又∵AB=AC,
∴∠B=∠C,
∴∠P=∠DQC=∠AQP,
∴AP=AQ,
∴△APQ是等腰三角形.
答案解析:根据等腰三角形的性质可得∠B=∠C,然后根据三角形的外角的性质可以证明∠P=∠DQC=∠AQP,则以及等角对等边即可证得.
考试点:等腰三角形的判定与性质.
知识点:本题考查三角形的外角的性质以及等腰三角形的性质以及判定定理,正确理解定理是关键.