半小时

问题描述:

半小时
n(m+2)-(n+1)²=-1一定成立吗 为什么
(x+a)²=x²+kx+4
已知2^a=3 2^b=6 2^c=12 abc的等量关系是什么

要使:n(m+2)-(n+1)²=-1
必须满足:(n+1)²-mn-2n-1=0
即:n² -mn =0
n(n-m) = 0
解得 n = 0 ,或n = m
所以n(m+2)-(n+1)²=-1只能是在n=0或n =m时才成立
(2) 由 (x+a)²=x²+kx+4可推知
x²+ 2ax + a² = x² + kx + 4
要使等式成立,必须满足:2a = k,且 a²=4
解得 a = -2 或 a = 2
当 a = -2时,k = 2a = 2×(-2) = -4
当 a = 2时,k = 2a = 2×2 = 4
(3) 因为 2^a = 3 2^b = 6 2^c = 12
所以 2^b = 2×3 = 2×2^a = 2^(a+1)
2^c = 4×3 = 2^2×2^a =2^(2+a)
所以 b = a + 1 (1)
c = a + 2 (2)
又 2^c = 2×6 = 2×2^b = 2^(b+1)
所以 c = b + 1
因此 c = b + 1 = (a + 1) +1 = a+2