y^3+(x+2)e^y=1 y''(-2)
问题描述:
y^3+(x+2)e^y=1 y''(-2)
答
y(-2)^3=1,y(-2)=1两边对x求导:3y^2*y'+e^y+(x+2)e^y* y'=0将y(-2)代入得:3y(-2)^2y'(-2)+e^y'(-2)=0,e^y'(-2)=-3y'(-2) 再求导:3(2y*y'^2+ y^2*y'')+e^y*y'+e^y*y'+(x+2)(e^y*y'*y'+e^y*y'')=0即:6y*y'^2+ 3y^2...