求函数z=x2-y2+2xy+y+2的极值

问题描述:

求函数z=x2-y2+2xy+y+2的极值

dz/dx=2x+2y=2(x+y)
令dz/dx=0
所以x=-y
所以z=x^2-x^2-2x^2-x+2=-2x^2-x+2
配方z=-2[x^2+1/2x+(1/4)^2]+17/8
z=-2(x+1/2)^2+17/8所以x=-1/2时有极大值17/8

dz/dx=2x+2y
令dz/dx=0
2x+2y=0 --1
dz/dy=-2y+2x
令dz/dy=0
-2y+2x=0 ---2
由1、2式得:x=0,y=0
函数z=x2-y2+2xy+y+2的极值:2