羚羊从静止开始奔跑,经过50m的距离能加速到最大速度25m/s,并能维持一段较长的时间.猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x米时开始攻击,羚羊则从猎豹攻击1.0s后才开始奔跑,假设羚羊和猎豹在加速阶段都做匀加速运动,且沿同一直线运动,求:(1)猎豹要在加速阶段追上羚羊,x应在什么范围内?(2)猎豹要在从最大速度减速前追上羚羊,x应在什么范围内取值?

问题描述:

羚羊从静止开始奔跑,经过50m的距离能加速到最大速度25m/s,并能维持一段较长的时间.猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x米时开始攻击,羚羊则从猎豹攻击1.0s后才开始奔跑,假设羚羊和猎豹在加速阶段都做匀加速运动,且沿同一直线运动,求:
(1)猎豹要在加速阶段追上羚羊,x应在什么范围内?
(2)猎豹要在从最大速度减速前追上羚羊,x应在什么范围内取值?

羚羊在加速阶段需时间:t1

50
25+0
2
=4.0s,
加速度:a1
25
4
m/s2

猎豹在加速阶段需时间:t2
60
30+0
2
=4.0s

加速度:a2
30
4
m/s2

(1)猎豹在加速阶段运动距离为s′2=60m而羚羊在这段时间内运动距离为:
s1
1
2
a1(t1−1.0)2
1
2
×
25
4
×(4.0−1.0)2
225
8
m

依题意应有:s2≥s1+x,
即:x≤s2-s1=60-
225
8
255
8
m
=31.875m
(2)猎豹从开始攻击到减速的距离为:s′2=60+30×4.0=180m;
而羚羊在这段时间内运动的距离为::s′1=50+25×(4.0-1.0)=125m;
依题意应有:s′2≥s′1+x,
即:x≤s′2-s′1=180-125m=55m
答:(1)猎豹要在加速阶段追上羚羊,x应在x≤31.875m范围内
(2)猎豹要在从最大速度减速前追到羚羊,L的范围为L≤55m.
答案解析:(1)根v2-v02=2ax求出羚羊和猎豹加速过程的加速度,以及加速时间,根据猎豹要在其最大速度减速前追到羚羊可知猎豹最大匀速时间为4.0s,根据猎豹和羚羊之间的位移关系列方程即可正确求解.
(2)猎豹要在其加速阶段追上羚羊,只要猎豹运动时间小于其加速的最大时间即可,然后根据位移关系列方程即可正确求解.
考试点:匀变速直线运动的位移与时间的关系.
知识点:对于追及问题一是要熟练应用运动学公式,二是明确追者和被追者之间的位移、时间关系,根据位移、时间关系列方程即可正确求解.