满足方程x2+ ( y-1)2+ ( x-y)2=1/3 的一切实数对(x,y)= .

问题描述:

满足方程x2+ ( y-1)2+ ( x-y)2=1/3 的一切实数对(x,y)= .

x^2 + (y-1)^2 + (x-y)^2 = 1/3
x^2 + y^2-2y+1 + x^2-2xy+y^2 = 1/3
x^2+y^2-xy-y+1/3=0
x^2 - xy + 1/4y^2 + 3/4y^2-y+1/3=0
(x-y/2)^2 + 3/4(y^2-4/3y+4/9)=0
(x-y/2)^2 + 3/4(y-2/3)^2=0
x-y/2=0,y=2/3
即:x=1/3,y=2/3

x²+(y-1)²+(x-y)²=1/3
即,3x²-3xy+3y²-3y+1=0 展开
3(x²-xy+y²/4)+9/4y²-3y+1=0 配方 将 3y² 拆开
3(x-y/2)²+(3/2y-1)²=0 化为完全平方
3/2y-1=0,或 x-y/2=0
得 y=2/3 或 x=1/3 所以 (x,y)=(2/3,1/3)