已知:如图,△ABC中,AD⊥BC于点D,AD=DC,∠FCD=∠BAD,点F在AD上,BF的延长线交AC于点E.(1)求证:BE⊥AC;(2)设CE的长为m,用含m的代数式表示AC+BF.

问题描述:

已知:如图,△ABC中,AD⊥BC于点D,AD=DC,∠FCD=∠BAD,点F在AD上,BF的延长线交AC于点E.

(1)求证:BE⊥AC;
(2)设CE的长为m,用含m的代数式表示AC+BF.

(1)证明:∵AD⊥BC于点D,
∴∠ADB=∠ADC=90°,
在△ABD和△CFD中

∠BAD=∠FCD
AD=DC
∠ADB=∠CDF

∴△ABD≌△CFD(ASA),
∴BD=DF,
∴∠FBD=∠BFD=45°,
∴∠AFE=∠BFD=45°,
又∵AD=DC,
∴∠DAC=∠ACD=45°,
∴∠AEF=90°,
∴BE⊥AC.
(2)∵∠EBC=∠ACD=45°,CE=m,
∴BE=CE=m
又∵∠AFE=∠FAE=45°,
∴AE=FE,
∴AC+BF
=CE+AE+BF
=CE+EF+BF
=CE+BE
=CE+CE
=2m.
答案解析:(1)根据ASA证△ABD≌△CFD,推出BD=DF,求出∠AFE=∠BFD=45°,根据AD=DC求出∠DAC=∠ACD=45°,求出∠AEF=90°,根据垂直定义推出即可;
(2)求出BE=CE=m,AF=EF,推出AC+BF=CE+BE=2CE,代入求出即可.
考试点:全等三角形的判定与性质;等腰直角三角形.
知识点:本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定,三角形的内角和定理,垂直定义等知识点的综合运用.