是否存在常数a,b,c,使得等式1.2平方+2.3平方+3.4平方+…+n(n+1)平方=n(n+1)/12(an平方+bn+c)
问题描述:
是否存在常数a,b,c,使得等式1.2平方+2.3平方+3.4平方+…+n(n+1)平方=n(n+1)/12(an平方+bn+c)
答
存在:3,11,10
122+233+344+...+n(n+1)(n+1) =n(n+1)(ann+bn+c)/12--------------------------1式
122+233+344+...+n(n+1)(n+1)+(n+1)(n+2)(n+2)=(n+1)(n+2)[a(n+1)(n+1)+b(n+1)+c]/12----------2式
2式-1式得:(n+1)(n+2)(n+2)=(n+1){【(n+2)(ann+(2a+b)n+c】-【ann+bn+c】n}/12
所以,12(n+2)(n+2)=annn+nn(4a+b)+n(a+b+c+4a+2b)+2(a+b+c)-annn-bnn-cn
12nn+48n+48=4ann+(5a+3b)n+2(a+b+c)
4a=12,5a+3b=48,a+b+c=24
a=3,b=11,c=10