设函数f(x)=2√3sinxcosx+2cos∧2x+m求最小正周期 2.当x∈[0,pai/2[时,求实数m的值,使函数fx的值域恰为[1/2,7/2]
问题描述:
设函数f(x)=2√3sinxcosx+2cos∧2x+m
求最小正周期 2.当x∈[0,pai/2[时,求实数m的值,使函数fx的值域恰为[1/2,7/2]
答
f(x)=2√3sinxcosx+2cos∧2x+m
f(x)=√3sin2x+cos2x+1+m
=2(√3/2sin2x+1/2cos2x)+1+m
=2sin(π/6+2x)+1+m
x∈[0,pai/2[
π/6-1/2-1则 -1+1+m=1/2, m=1/2
2+1+1/2=7/2
答
(1)f(x)=2√3sinxcosx+2cos²x+m=√3sin2x+1+cos2x +m=2sin(2x+π/6) +m+1.T=2π/2=π(2)0≤x≤π/2π/6≤2x+π/6≤7π/6-1≤2sin(2x+π/6)≤2m≤2sin(2x+π/6)+m+1≤3+m所以m=1/23+m=7/2所以m=1/2...