1乘3分之一加3乘5分之一加5乘7分之一一直加到二n加1,二n减1分之一等于多少求结果
1乘3分之一加3乘5分之一加5乘7分之一一直加到二n加1,二n减1分之一等于多少
求结果
1/1*3+1/3*5+……+1/(2n-1)(2n+1)
=[2/1*3+2/3*5+……+2/(2n-1)(2n+1)]/2
={(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+……+[1/(2n-1)-1/(2n+1)]}/2
=[1-1/(2n+1)]/2
=n/(2n+1)
1/(1*3)+1/(3*5)+1/(5*7)+...+1/(2n-1)*(2n+1)
=1/2[1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)](相临2项加减相互抵消就剩下第一项和最后一项)
=1/2(1-1/(2n+1)]
=n/(2n+1)
1/(1*3)+1/(3*5)+……+1/[(2n-1)(2n+1)]
=1/2*[(1-1/3)+(1/3-1/5)+...+1/(2n-1)-1/(2n+1)]
=1/2*(1-1/(2n+1)
=1/2*2n/(2n+1)
=n/2(n+1)
1/(1*3)+1/(3*5)+1/(5*7)+...+1/(2n-1)*(2n+1)
=1/2[1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)](相临2项加减相互抵消就剩下第一项和最后一项)
=1/2(1-1/(2n+1)]
=n/(2n+1)
1/1*3+1/3*5+1/5*7+....+1/(n+1)*(n-1)
=(1/2)*[1-1/3+1/5-1/7+1/7...+1/(n-1)-n+1)]
=(1/2)*[1-1/(n+1)]
=n/2(n+1)
1/1*3+1/3*5+……+1/(2n-1)(2n+1)
=[2/1*3+2/3*5+……+2/(2n-1)(2n+1)]/2
={(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+……+[1/(2n-1)-1/(2n+1)]}/2
=[1-1/(2n+1)]/2
=n/(2n+1)
1/1*3+1/3*5+……+1/(2n-1)(2n+1)
=1/2[1/1-1/3+1/3-1/5+……+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=1/2*2n/(2n+1)
=n/(2n+1)
1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
楼主打错了吧,应该是(2N-1)*(2n+1)分之一吧
如果是这样结果是(N+2分之N)