已知a^2+2ab+b^2+(a+2)^2=0,b=
问题描述:
已知a^2+2ab+b^2+(a+2)^2=0,b=
计算:(x^2n-2x^ny^n+y^2n)/(x^n-y^n)=
已知x+y=a,xy=b,则xy^2+yx^2=
答
1.原式 => (a+b)^2 + (a+2)^2 = 0
因为任何实数的平方>=0,所以a+b = 0; a+2 = 0.
所以a=-2,b=2
2.原式 = [(x^n)^2-2x^ny^n + (y^n)^2]/(x^n-y^n)
= (x^n-y^n)^2/(x^n-y^n)
= x^n - y^n
3.xy^2+yx^2 = xy(y+x) = ba = ab