几道高一三角恒等变换

问题描述:

几道高一三角恒等变换
1 .3√15sinx+3√5cosx 2.3∕2cosx-√3/2sinx 3 .√3sinx/2+cosx/2
4.√2/4sin( π/4-x)+√6/4cos( π/4-x)
会的大侠救救命啊 下午老师要放到班上投影的,会的帮下啊,小弟感激不尽.

1 .3√15sinx+3√5cosx
=6√5(√3/2 sinx+1/2 cosx)
=6√5(cos30°sinx+sin30°cosx)
=6√5sin(x+30°)
2. 3∕2cosx-√3/2sinx
=3(1/2 cosx-√3/2sinx)
=3(sin30°cosx-cos30°sinx)
=3sin(30°-x)
3 . √3sinx/2+cosx/2
=2(√3/2 sinx/2+1/2 cosx/2)
=2(cos30°sinx/2+sin30°cosx/2)
=2sin(30°+x/2)
4.√2/4sin( π/4-x)+√6/4cos( π/4-x)
=√2/2[1/2 sin( π/4-x)+√3/2cos( π/4-x)]
=√2/2[cosπ/2sin(π/4-x)+sinπ/3cos(π/4-x)]
=√2/2[sin(π/4-x+π/3)]
=√2/2sin(7π/12-x)