已知m-1的绝对值+n-2的平方=0,求mn分之1+(m+1)(n+1)分之1+…+(m+2009)(n+2009)分之1的值
问题描述:
已知m-1的绝对值+n-2的平方=0,求mn分之1+(m+1)(n+1)分之1+…+(m+2009)(n+2009)分之1的值
答
∵丨m-1丨+(n-2)^2=0
∴丨m-1丨=0,(n-2)^2=0即m=1,n=2
代入得:原式=1/(1*2)+1/(2*3)+…+1/(2010*2011)
=(1-1/2)+(1/2-1/3)+…+(1/2010-1/2011)
=1-1/2011
=2010/2011
答
m-1的绝对值+n-2的平方=0
m=1,n=2,
mn分之1+(m+1)(n+1)分之1+…+(m+2009)(n+2009)分之1
=1/(1*2)+1/[(1+1)(2+1)]+……+1/[(1+2009)(2+2009)]
=1/2+(1/2-1/3)+(1/3-1/4)+……+(1/2008-1/2009)
=1/2+1/2-1/3+1/3-1/4+……+1/2007-1/2008+1/2008-1/2009
=1-1/2009
=2008/2009