当a>0时不等式组0≤x−a≤10≤x+a≤1的解集为______.

问题描述:

当a>0时不等式组

0≤x−a≤1
0≤x+a≤1
的解集为______.

原不等式组

0≤x−a≤1
0≤x+a≤1
可化为:
a≤x≤a+1
−a≤x≤−a+1

当0<a<
1
2
时,-a<a<-a+1<a+1
此时不等式组的解集为:[a,1-a]
当a=
1
2
时,,-a<a=
1
2
=-a+1<a+1
此时不等式组的解集为:{
1
2
}
当a>
1
2
时,-a<-a+1<a<a+1
此时不等式组的解集为:∅
故答案为:当a>
1
2
时为∅;当a=
1
2
时为{
1
2
};当0<a<
1
2
时为[a,1-a]
答案解析:根据不等式的性质,我们易将原不等式组
0≤x−a≤1
0≤x+a≤1
可化为
a≤x≤a+1
−a≤x≤−a+1
,然后对参数a进行分类讨论,在每一类中写出不等式的解集,最后综合各种情况,不难给出结果.
考试点:二元一次不等式组.
知识点:解含有参数的不等式组时,我们一定要对参数进行分类讨论,由于不等式组的解集是组成不等式组的各个不等式解集的交集,故我们在分类讨论时,分类的标准要根据各个不等式解集的端点来决定,即我们要通过分析不等式解集端点之间的关系,来决定分类标准.