如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.

问题描述:

如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.

证明:在△ACB与△DCE中,

CD=CA
∠ACB=∠DCE
CE=CB

∴△ACB≌△DCE(SAS),
∴AB=DE,
即DE的长就是A、B的距离.
答案解析:本题的关键是设计三角形全等,巧妙地借助△ACB≌△DCE用SAS证明,(其中两边已知,角为对顶角),寻找所求线段与已知线段之间的等量关系.
考试点:全等三角形的应用.
知识点:本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.