八(一)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由;(2)方案(Ⅱ)是否可行?请说明理由;(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.
问题描述:
八(一)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.
阅读后回答下列问题:
(1)方案(Ⅰ)是否可行?请说明理由;
(2)方案(Ⅱ)是否可行?请说明理由;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.
答
知识点:本题主要考查了全等三角形的证明及性质和相似三角形的判定和性质.
(1)方案(Ⅰ)可行;∵DC=AC,EC=BC且有对顶角∠ACB=∠DCE∴△ACB≌△DCE(SAS)∴AB=DE∴测出DE的距离即为AB的长故方案(Ⅰ)可行.(2)方案(Ⅱ)可行;∵AB⊥BC,DE⊥CD∴∠ABC=∠EDC=90°又∵BC=CD,∠ACB=∠...
答案解析:(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,故此时方案(Ⅱ)不成立.
考试点:相似三角形的应用;全等三角形的应用.
知识点:本题主要考查了全等三角形的证明及性质和相似三角形的判定和性质.