如果有理数a、b满足Ia-2I+I1-bI=0求下列式子的值1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+100)(b+100)
如果有理数a、b满足Ia-2I+I1-bI=0求下列式子的值1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+100)(b+100)
|a-2|+|b-1|=0 因:|a-2|≥0,|b-1|≥0
所以有:|a-2|=0 得:a=2
|b-1|=0 得:b=1
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+100)(b+100)
=1/1x2+1/2x3+1/3x4+...+1/101x102
=1-1/2+1/2-1/3+1/3-1/4+....+1/101-1/102
=1-1/102
=101/102
由于a=2 b=1所以 后面的那个式子将其分解, 1/ab=1/b - 1/a 1/(a+1)(1+b)=1/(b+1)-1/(a+1) 以此类推
又由于1/a=1/(1+b)。。。。。。
所以 各个消掉之后就剩下1/b-1/(a+100)=100/101
a=2 b=1 下面就可以转化成为,1/1*2+1/2*3+1/3*4+……+1/n*(n+1)的问题了
原式等于1—1/102=101/102
a-2=0,1-b=0,a=2,b=1
1/2*1 + 1/3*2 + 1/4*3 +... + 1/102*101
=1/1 -1/2 + 1/2 -1/3 +... + 1/100 -1/101 +1/101-1/102
=1-1/102
=101/102
Ia-2I+I1-bI=0
则a-2=0,1-b=0
得a=2,b=1
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+100)(b+100)
=1/2+1/(2×3)+1/(3×4)+…………+1/(101×102)
=1/2+1/2-1/3+1/3-1/4+…………+1/101-1/102
=1/2+1/2-1/102
=1-1/102
=101/102