计算三重积分∫∫∫(y^2+z^2)dv,积分区域是y^2=2x绕x轴旋转一周后和x=5形成的闭区域

问题描述:

计算三重积分∫∫∫(y^2+z^2)dv,积分区域是y^2=2x绕x轴旋转一周后和x=5形成的闭区域

采用柱坐标:x=x,y=rcosθ,z=rsinθ; dV=rdrdθdx;
所以∫∫∫(Ω)(y^2+z^2)dV=∫(0→5)dx∫(0→2π)dθ∫(0→√(2x))r^2rdr
=2π∫(0→5)dx(1/4)r^4(0→√(2x))
=2π∫(0→5)x^2dx
=250π/3(毕).