f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=(x²+1)(x+1),求f(x)、g(x)

问题描述:

f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=(x²+1)(x+1),求f(x)、g(x)

f(x)是偶函数,则有f(x)=f(-x);g(x)是奇函数,则有g(-x)=-g(x)
因为f(x)+g(x)=(x²+1)(x+1)
则:f(-x)+g(-x)=(x²+1)(1-x)
两式相加得:2f(x)=2(x²+1),
两式相减得:2g(x)=2x(x²+1)
所以:f(x)=x²+1,g(x)=x³+x

祝你开心!希望能帮到你,如果不懂,请Hi我,祝学习进步!

  f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=(x²+1)(x+1),求f(x)、g(x)
  f(x)是偶函数,f(-x)=f(x)
  g(x)是奇函数,g(-x)=-g(x)
  f(x)+g(x)=(x²+1)(x+1), (1)
  f(-x)+g(-x)=(x²+1)(-x+1),
  f(x)-g(x)=(x²+1)(-x+1), (2)
  (1)+(2)得,2f(x)=2(x²+1),
  f(x)=x²+),
  (1)-(2)得,2g(x)=2x(x²+1),
  g(x)=x(x²+1),
  希望能帮到你,满意请采纳

令x=-u,则f(x)+g(x)=f(-u)+g(-u)=f(u)-g(u)=(u^2+1)(-u+1),即f(x)-g(x)=(x^2+1)(-x+1),与原始等式联立,解方程组得,f(x)=x^2+1;g(x)=x^3+x