您的位置: 首页 > 作业答案 > 数学 > 设A是n阶方阵,且满足A*AT(T是转置)=En和A的行列式等于-1,证明A+En的行列式等于0. 设A是n阶方阵,且满足A*AT(T是转置)=En和A的行列式等于-1,证明A+En的行列式等于0. 分类: 作业答案 • 2021-12-19 14:46:17 问题描述: 设A是n阶方阵,且满足A*AT(T是转置)=En和A的行列式等于-1,证明A+En的行列式等于0. 答