12个球 其中11个是相同质量 另一个未知质量 用天平称三次 怎么才能把不一样的找出来
12个球 其中11个是相同质量 另一个未知质量 用天平称三次 怎么才能把不一样的找出来
另一个未知质量的球我们先称其为坏球
分3组 a、b、c各4个球编号a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4
第一次比较a组和b组,
一、若a,b相同,坏球在c,第二次4个球可以取其中两球c1、c2和a1、a2比较,天平不平衡,则坏球在c1、c2,否则在c3、c4。第三次剩下两球,取这两球中的任意一个与a1比较,即知哪只球是坏球
二、若a,b不同,坏球在a或b,第二部取走a1,a2,再将a3放入b组,b1、b2放入a组,则a组为a4、b1、b2,b组为a3、b3、b4,此时有3种可能
①若天平还是原来一样不平衡,说明坏球位置没变,所以可能是a4、b3、b4;
②若天平反方向倾斜了,说明坏球位置变了,所以可能是a3、b1、b2;
③若天平平衡了,说明坏球不在a组和b组了,那只有可能是在a1、a2中
三、2个球一次分辨上面说了,下面讲3个球1次分辨
6个球中3个坏球“嫌疑犯”分别在天平的两边(一边1个一边2个),天平还是保持倾斜状态,现在一边取走一个好球另边取走一个坏球“嫌疑犯”,(同时的)再将一个坏球“嫌疑犯”和另外一边的好球交换位置,此时天平上每边都有2个球,3个坏球“嫌疑犯”的命运是1个被取走,1个被交换了位置,1个不动
①若天平还是原来一样不平衡,说明坏球是那个位置没动过的“嫌疑犯”
②若天平反方向倾斜了,说明坏球位置变了,是那个和好球换了位置的“嫌疑犯”
③若天平平衡了,说明坏球不在天平上,就是那个被取走的那个“嫌疑犯”
3次就可以分辨出坏球来了
先把球编号1-12,
第一次,先将1-4号放在左边,5-8号放在右边。
1.如果天平平衡,则坏球在9-12号。
第二次将1-3号放在左边,9-11号放在右边。
1.如果右重则坏球在9-11号且坏球较重。
第三次将9号放在左边,10号放在右边。
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重。
2.如果平衡则坏球为12号。
第三次将1号放在左边,12号放在右边。
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻。
3.如果左重则坏球在9-11号且坏球较轻。
第三次将9号放在左边,10号放在右边。
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻。
2.如果左重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻。
第三次将6号放在左边,7号放在右边。
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻。
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重。
第三次将2号放在左边,3号放在右边。
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重。
3.如果左重则坏球在没有被触动的1,5号。如果是1号,
则它比标准球重;如果是5号,则它比标准球轻。
第三次将1号放在左边,2号放在右边。
1.这次不可能右重。
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重
3.如果右重,则情况和2相反,同样思路即解
2、有十三个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝码的天平称三次,将那个重量异常的球找出来。
注意: 是重量是异常 没有明确轻重
答案如下:先把球编号1-13,
第一次,先将1-4号放在左边,5-8号放在右边。
1.如果天平平衡,则坏球在9-13号。
第二次将1-3号放在左边,9-11号放在右边。
1.如果右重则坏球在9-11号且坏球较重。
第三次将9号放在左边,10号放在右边。
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重。
2.如果平衡则坏球为12、13号。
第三次将1号放在左边,12号放在右边。
1.如果右重则12号是坏球且比标准球重;
2.如果平衡则13号是坏球,至此三次机会用完,但未称出13号轻重;
3.如果左重则12号是坏球且比标准球轻。
3.如果左重则坏球在9-11号且坏球较轻。
第三次将9号放在左边,10号放在右边。
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻。
2.如果不平衡,答案参考12个球的2、3步,因为这时的问题将转化为相同的问题,即2次从8个球中找出异常球。
答案如下:先把球编号1-12,
第一次,先将1-4号放在左边,5-8号放在右边.
1.如果天平平衡,则坏球在9-12号.
第二次将1-3号放在左边,9-11号放在右边.
1.如果右重则坏球在9-11号且坏球较重.
第三次将9号放在左边,10号放在右边.
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重.
2.如果平衡则坏球为12号.
第三次将1号放在左边,12号放在右边.
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻.
3.如果左重则坏球在9-11号且坏球较轻.
第三次将9号放在左边,10号放在右边.
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻.
2.如果左重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻.
第三次将6号放在左边,7号放在右边.
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重.
第三次将2号放在左边,3号放在右边.
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重.
3.如果左重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球重;如果是5号,则它比标准球轻.
第三次将1号放在左边,2号放在右边.
1.这次不可能右重.
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重
3.如果右重,则情况和2相反,同样思路即解
2、有十三个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝码的天平称三次,将那个重量异常的球找出来.
注意:是重量是异常 没有明确轻重
答案如下:先把球编号1-13,
第一次,先将1-4号放在左边,5-8号放在右边.
1.如果天平平衡,则坏球在9-13号.
第二次将1-3号放在左边,9-11号放在右边.
1.如果右重则坏球在9-11号且坏球较重.
第三次将9号放在左边,10号放在右边.
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重.
2.如果平衡则坏球为12、13号.
第三次将1号放在左边,12号放在右边.
1.如果右重则12号是坏球且比标准球重;
2.如果平衡则13号是坏球,至此三次机会用完,但未称出13号轻重;
3.如果左重则12号是坏球且比标准球轻.
3.如果左重则坏球在9-11号且坏球较轻.
第三次将9号放在左边,10号放在右边.
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻.
2.如果不平衡,答案参考12个球的2、3步,因为这时的问题将转化为相同的问题,即2次从8个球中找出异常球.
分为3 3 3 3
1先一组称取
2 再从中拿一组和其他的一组称
若第一次平那么不一样的在第3组 且可知道是重还是轻
若第一次不平第二次称取可知是重是轻
3把不平的一组来分为 1 1 1称
若平第3球不同
若不同即可分出