Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为( )cm.A. 5B. 6C. 7D. 8
问题描述:
Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为( )cm.
A. 5
B. 6
C. 7
D. 8
答
Rt△ABC中,∠C=90°,AC=6cm,BC=8cm;
由勾股定理,得:AB=
=10cm;
AC2+BC2
斜边上的中线是
AB=5cm.1 2
因而外心到直角顶点的距离等于斜边的中线长5cm.
故选A.
答案解析:直角三角形的外心与斜边中点重合,因此外心到直角顶点的距离正好是斜边的一半;由勾股定理易求得斜边AB的长,进而可求出外心到直角顶点C的距离.
考试点:三角形的外接圆与外心;勾股定理.
知识点:本题考查的是直角三角形的外接圆半径的求法,重点在于理解直角三角形的外接圆是以斜边中点为圆心,以斜边的一半为半径的圆.