如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:(1)F为BD的中点.(2)△DEF为等边三角形.
问题描述:
如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:
(1)F为BD的中点.
(2)△DEF为等边三角形.
答
(1)证明:∵DC∥AB,AD=BC,∠A=60°,
∴∠ABC=∠A=60°,
又∵BD平分∠ABC,
∴∠ABD=∠CBD=30°,
∵DC∥AB,
∴∠BDC=∠ABD=30°,
∴∠CBD=∠CDB,
∴CB=CD,
∵CF⊥BD,
∴F为BD的中点;
(2)∵DE⊥AB,F为BD的中点,
∴DF=BF=EF,
∵∠ABD=30°,
∴∠BDE=90°-30°=60°,
∴△DEF为等边三角形.
答案解析:(1)根据等腰梯形同一底上的两底角相等求出∠ABC=∠A=60°,再根据角平分线的定义求出∠ABD=∠CBD=30°,根据两直线平行,内错角相等求出∠CDB=30°,从而得到∠CBD=∠CDB,再根据等角对等边的性质求出CB=CD,然后根据等腰三角形三线合一的性质可得F为BD的中点;
(2)根据直角三角形斜边上的中线等于斜边的一半可得DF=BF=EF,再根据直角三角形两锐角互余求出∠BDE=60°,然后根据有一个角是60°的等腰三角形是等边三角形证明.
考试点:梯形;等腰三角形的判定与性质;等边三角形的判定.
知识点:本题考查了等腰梯形的性质,角平分线定义,两直线平行内错角相等的性质,以及等腰三角形三线合一的性质,等边三角形的判定,根据角的度数的相等求出相等的角是解题的关键.