设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、 ∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:若有理数集Q包含于M,则数集M必为数域;为什么不对 解析:设根号2∈M ,且1+根号2不属于M 所以错,为什么
问题描述:
设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、 ∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:若有理数集Q包含于M,则数集M必为数域;为什么不对 解析:设根号2∈M ,且1+根号2不属于M 所以错,为什么
答