如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
问题描述:
如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
答
证明:∵AB=BC=CA,∴△ABC为等边三角形,∴∠BAC=∠C=60°,在△ABE和△CAD中AB=AC∠BAC=∠CAE=DC∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠BPQ=∠ABE+∠BAP,∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,∵BQ⊥AD∴∠BQ...
答案解析:推出等边三角形ABC,推出∠BAC=∠C=60°,证△ABE≌△CAD,推出∠ABE=∠CAD,求出∠BPQ=∠CAD+∠BAP=∠CAB=60°,求出∠PBQ=30°,根据含30度角的直角三角形性质推出即可.
考试点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.
知识点:本题考查了等边三角形的性质和判定,含30度角的直角三角形性质,全等三角形的性质和判定的应用,关键是求出∠BPQ=60°和∠PBQ=30°.