如图,在△ABC中,AB=AC,D为BC中点,DE⊥AB,垂足为E,DF⊥AC,垂足为F,试说明DE=DF的道理(不用全等证).
问题描述:
如图,在△ABC中,AB=AC,D为BC中点,DE⊥AB,垂足为E,DF⊥AC,垂足为F,试说明DE=DF的道理(不用全等证).
答
证明:∵AB=AC,D为BC中点,
∴∠BAD=∠CAD(等腰三角形三线合一),
∵DE⊥AB,DF⊥AC,
∴DE=DF(角平分线上的点到角的两边的距离相等).
答案解析:根据等腰三角形三线合一的性质可得∠BAD=∠CAD,再根据角平分线上的点到角的两边的距离相等证明即可.
考试点:角平分线的性质;等腰三角形的性质.
知识点:本题考查了等腰三角形三线合一的性质,角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.