如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.

问题描述:

如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.

证明:∵AD是△ABC的中线,∴BD=CD.方法一:延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,BD=CD∠BDF=∠CDMDF=DM∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠...
答案解析:有两种解法:
①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.
②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.
考试点:全等三角形的判定与性质.
知识点:本题考查了三角形全等的判定及性质、等腰三角形的性质.其中普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,解决此题的关键是作出巧妙的辅助线:倍长中线.