如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.(1)求∠A的度数;(2)求⊙O的半径.

问题描述:

如图,⊙O是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,∠DEF=45度.连接BO并延长交AC于点G,AB=4,AG=2.

(1)求∠A的度数;
(2)求⊙O的半径.

(1)连接OD,OF,
∵⊙O是△ABC的内切圆,
∴OD⊥AB,OF⊥AC,又∠DOF=2∠DEF=2×45°=90°,
∴∠ODA=∠OFA=∠DOF=90°,
∴四边形ADOF是矩形,
∴∠A=90°;
(2)设⊙O的半径为r,
由(1)知四边形ADOF是矩形,又OD=OF,
∴四边形ADOF是正方形.
∴OD∥AC.
∴△BOD∽△BGA.

DO
AG
BD
BA

r
2
4−r
4

解得r=
4
3

∴⊙O的半径为
4
3

答案解析:(1)由于已知了∠DEF的度数,那么可连接OD,OF,那么∠DOF=2∠DEF=90°,根据AD,AF是圆的切线,那么OD⊥AB,OF⊥AC,由此可得出∠A的度数.
(2)根据(1)的结论我们不难得出ADOF是个正方形,那么OD=AD=AF=OF就都等于圆的半径长,那么可用半径表示出BD的长,根据OD∥AC,我们可以得出关于BD,AB,OD,AG的比例关系式.已知了AG,AB的长就能求出半径的长了.
考试点:三角形的内切圆与内心;正方形的性质;平行线分线段成比例;相似三角形的判定与性质.

知识点:本题考查了切线的性质,圆周角定理,相似三角形等知识点综合应用.根据圆周角定理和切线的性质得出ADOF是正方形是解题的关键.