3x(4+1)x(4^2+1)x(4^4+1) 利用平方差公式计算(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)

问题描述:

3x(4+1)x(4^2+1)x(4^4+1) 利用平方差公式计算
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)

把3替换成4-1
3x(4+1)x(4^2+1)x(4^4+1)
=(4-1)x(4+1)x(4^2+1)x(4^4+1)
=(4^2-1)x(4^2+1)x(4^4+1)
=(4^4-1)x(4^4+1)
=(4^8-1)

原式=(4-1)×(4+1)×(4^2+1)×(4^4+1)
=(4^2-1)×(4^2+1)×(4^4+1)
=(4^4-1)×(4^4+1)
=4^8-1


3x(4+1)x(4^2+1)x(4^4+1)
=(4-1)x(4+1)x(4^2+1)x(4^4+1)
=(4^2-1)x(4^2+1)x(4^4+1)
=(4^4-1)x(4^4+1)
=4^8-1

3x(4+1)x(4^2+1)x(4^4+1)
=(4-1)x(4+1)x(4^2+1)x(4^4+1)
=(4^2-1)(4^2+1)x(4^4+1)
=(4^4-1)(4^4+1)
=4^8-1