解方程:1/x2+x +1/x2+3x+2 +1/x2+5x+6 +1/x2+7x+12 +1/x2+9x+20=5/x2+11x-708解方程:1/x2+x +1/x2+3x+2 +1/x2+5x+6 +1/x2+7x+12 +1/x2+9x+20=5/x2+11x-708

问题描述:

解方程:1/x2+x +1/x2+3x+2 +1/x2+5x+6 +1/x2+7x+12 +1/x2+9x+20=5/x2+11x-708
解方程:
1/x2+x +1/x2+3x+2 +1/x2+5x+6 +1/x2+7x+12 +1/x2+9x+20=5/x2+11x-708

原式为: 1/x2+x +1/x2+3x+2 +1/x2+5x+6 +1/x2+7x+12 +1/x2+9x+20=5/x2+11x-708
1/x(x+1) +1/(x+1)(x+2) +1/(x+2)(x+3) +1/(x+3)(x+4) +
1/(x+4)(x+5) =5/x²+11x-708 观察发现原方程可写为:
1/x -1/x+1 +1/x+1 -1/x+2 +1/x+2 -1/x+3 +1/x+3 -1/x+4 +
1/x+4 -1/x+5 =5/x²+11x-708 左边的中间项都抵消了,有
1/x-1/x+5 =5/x²+11x-708
5/ x (x+5) =5/x²+11x-708
方程左右的分子相等,所以有
x (x+5)=x²+11x-708
x²+5x=x²+11x-708
x=118

1/(x² +x )+1/(x² +3x+2)+1/(x² +5x+6)+1/(x² +7x+12)+1/(x² +9x+20)=5/(x² +11x-708)
是这样吧?
解得:x=118