设f(x)是连续的周期函数,周期为T,证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx才看这部分不太懂 为什么 φ(a)=:∫(a~a+T)f(x)dx 不是应该是φ(a+T)-φ(a)=:∫(a~a+T)f(x)dx

问题描述:

设f(x)是连续的周期函数,周期为T,证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx
才看这部分不太懂 为什么 φ(a)=:∫(a~a+T)f(x)dx 不是应该是φ(a+T)-φ(a)=:∫(a~a+T)f(x)dx

这里 φ并非f的原函数,只是将右边的积分定义为 φ