谁能给我讲讲这道题啊?设f(x)是连续的周期函数,周期为T,证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx;书上的做法是:记φ(a)=∫(a~a+T)f(x)dx,则φ'(a)=f(a+T)-f(a)=0,知φ(a)与a无关,因此φ(a)=φ(0),即:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx.导数为0怎么就知道φ(a)与a无关了呢?
问题描述:
谁能给我讲讲这道题啊?设f(x)是连续的周期函数,周期为T,证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx;
书上的做法是:记φ(a)=∫(a~a+T)f(x)dx,则φ'(a)=f(a+T)-f(a)=0,知φ(a)与a无关,因此φ(a)=φ(0),即:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx.导数为0怎么就知道φ(a)与a无关了呢?
答