设[x]表示不超过实数x的最大整数,如[0.3]=0,[-0.4]=-1.则在坐标平面内满足方程[x]2+[y]2=25的点(x,y)所构成的图形的面积为(  ) A.8 B.10 C.12 D.14

问题描述:

设[x]表示不超过实数x的最大整数,如[0.3]=0,[-0.4]=-1.则在坐标平面内满足方程[x]2+[y]2=25的点(x,y)所构成的图形的面积为(  )
A. 8
B. 10
C. 12
D. 14

由题意可得:方程:[x]2+[y]2=25
当x,y≥0时,[x],[y]的整解有两组,(3,4),(0,5),所以此时x可能取的数值为:5,4,3,0.
所以当|[x]|=5时,5≤x<6,或者-5≤x<-4,|[y]|=0,0≤y<1,围成的区域是2个单位正方形
当|[x]|=4时,4≤x<5,或者-4≤x<-3,|[y]|=3,-3≤y<-2,或者3<y≤4,围成的区域是4个单位正方形
当|[x]|=3时,3≤x<4,或者-3≤x<-2,|[y]|=4,-4≤y<-3,或者4<y≤5,围成的区域是4个单位正方形
当|[x]|=0时,0≤x<1,|[y]|=5,5≤y<6 或者-5≤y<-4,围成的区域是2个单位正方形
所以总面积是:12
故选C.