抛物线C:y^2=2x,直线l:y=2x+b被曲线C截得的弦的中点的轨迹方程是

问题描述:

抛物线C:y^2=2x,直线l:y=2x+b被曲线C截得的弦的中点的轨迹方程是

设交点A(x1,y1),B(x2,y2),中点M(x0,y0)y1=2x1+b,y2=2x2+b2y0=y1+y2=2(x1+x2)+2b,2x0=x1+x2y=2x+b与y^2=2x联列方程组,消去y,得:4x^2+4bx+b^2=2x即:4x^2+(4b-2)x+b^2=0△=16b^2-16b+4-16b^2=-16b+4>0,得:b1/8)...