a>0,当x∈[-1,1]时,f(x)=-x^2-ax+b的最小值为-1,最大值为1
问题描述:
a>0,当x∈[-1,1]时,f(x)=-x^2-ax+b的最小值为-1,最大值为1
为什么由所给条件可以得出x=1时,f(x)取最小值-1?
答
由题对称轴小于0,二次函数开口向下.画图,因为x=1到对称轴的距离在x∈[-1,1]时是最大的,所以得x=1时f(x)在定义域内取最小值-1(也可以分对称轴在-1到0和对称轴小于-1讨论).