把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为______.

问题描述:

把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为______.

由已知知前七组的累积频数为0.79×100=79,
∴后三组共有的频数为21,
依题意

a1•(1−q3)
1−q
=21,
a1(1+q+q2)=21.
∴a1=1,q=4.
∴后三组频数最高的一组的频数为16.
答案解析:已知前七组的累积频率为0.79,而要研究后三组的问题,因此应先求出后三组的频率之和为1-0.79=0.21,进而求出后三组的共有频数,或者先求前七组共有频数后,再计算后三组的共有频数.
考试点:频率分布表;等比数列的性质.
知识点:学生已有对统计活动的认识,并学习了统计图表、收集数据的方法,对于如何抽样更能使样本代表总体的意识要加强;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学.