证明1+x+sinx=0在区间(-∏/2,∏/2)有根
问题描述:
证明1+x+sinx=0在区间(-∏/2,∏/2)有根
答
f(x)=1+x+sinx 易知它在(-∏/2,∏/2)连续并可导
x=-∏/2,∏/2代入
f(-∏/2)=-∏/20
所以f(x)=0在(-∏/2,∏/2)有实根
x=-0.510973429389209(excel就可以算了)