y=sinx+cosx的极值点 用导数求
问题描述:
y=sinx+cosx的极值点 用导数求
答
y'=cosx-sinx=-√2sin(x-π/4),
令 y'=0,得 x-π/4=kπ,
x=kπ+π/4,k∈Z
k=2n时,
f(2nπ+π/4)=sin(π/4)+cos(π/4)=√2
所以极大值点为(2nπ+π/4,√2)
同理,k=2n-1时,极大值点为(2nπ-3π/4,-√2)
答
y = sinx + cosx = √2sin(x + π/4)y' = √2cos(x + π/4),y'' = -√2sin(x + π/4)y' = 0 => cos(x + π/4) = 0x + π/4 = 2kπ + π/2 或 x + π/4 = 2kπ - π/2x = 2kπ + π/4 或 x = 2kπ - 3π/4y''|(2kπ +...