如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE,CD相交于点B.(1)求证:直线AB是⊙O的切线;(2)如果AC=1,BE=2,求OCAC的值.

问题描述:

如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE,CD相交于点B.

(1)求证:直线AB是⊙O的切线;
(2)如果AC=1,BE=2,求

OC
AC
的值.

(1)证明:如图,连接OE,
∵DE∥OA,
∴∠COA=∠ODE,∠EOA=∠OED,
∵OD=OE,
∴∠ODE=∠OED,作业帮
∴∠COA=∠EOA,
又∵OC=OE,OA=OA,
∴△OAC≌△OAE,
∴∠OEA=∠OCA=90°,
∴OE⊥AB,
∴直线AB是⊙O的切线;
(2) 由(1)知△OAC≌△OAE,
∴AE=AC=1,AB=1+2=3,在直角△ABC中,BC=

AB2-AC2
=
32-12
=2
2

∵∠B=∠B,∠BCA=∠BEO,
∴△BOE∽△BAC,
OE
AC
=
BE
BC
=
2
2
2
=
2
2

∴在直角△AOC中,tan∠OAC=
OC
AC
=
OE
AC
=
2
2

OC
AC
=
2
2

答案解析:(1)连接OE,由已知的平行,根据两直线平行,同位角相等,内错角也相等得到两对角的相等,然后由半径OD=OE,根据等角对等边得到∠ODE=∠OED,等量代换得∠COA=∠EOA,再由半径OC=OE,公共边的相等,根据“SAS”证明△OAC≌△OAE,最后根据全等三角形的对应角相等得到OE⊥AB,利用经过直径的一端,并且垂直于这条直径的直线是圆的切线可得证;
(2)由(1)证得的△OAC≌△OAE,根据全等三角形的对应边相等得到AE=AC=1,再由已知的BE的长相加求出AB的长,然后在直角三角形ABC中,利用勾股定理求出BC的长,再根据一对公共角的相等和一对直角的相等,得到△BOE∽△BAC,根据相似三角形的对应边成比例即可得到
OE
AC
的值,等量代换可得
OC
AC
的值.
考试点:切线的判定与性质.
知识点:此题考查了切线的判定,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的运用,以及锐角三角函数的定义,是一道多知识的综合题,要求学生把所学的知识融汇贯穿,灵活运用.其中证明切线的方法一般有以下两种:①有点连接证明半径(或直径)与所证的直线垂直;②无点作垂线,证明圆心到直线的距离等于半径.