若y=f(x)为定义在区间零到正无穷内的函数,对任意的k>0,f(x)在区间[K,正无穷)上有界,并且limf(x)=a,则证明y=f(x)在0到正无穷上是有界函数.不好意思 今晚十二点前最好!
问题描述:
若y=f(x)为定义在区间零到正无穷内的函数,对任意的k>0,f(x)在区间[K,正无穷)上有界,并且limf(x)=a,则证明y=f(x)在0到正无穷上是有界函数.
不好意思 今晚十二点前最好!
答
limf(x)=a
所以对于任意ε>0,存在k>0,使得对x∈(0,k),有|f(x)-a|