设sn 是等差数列{an} 的前n项之和,且s6s9 ,则下列结论中错误的①s9

问题描述:

设sn 是等差数列{an} 的前n项之和,且s6s9 ,则下列结论中错误的①s9

由题意,知:an=a1+(n-1)d;sn=na1+[(n-1)*n/2]d。
于是有:s6=6a1+15d、s7=7a1+21d、s8=8a1+28d、s9=9a1+36d;
由s60.....(式1)
由s7=s8,可知:7a1+21d=8a1+28d → a8=a1+7d=0.....(式2)
由s8>s9,可知:s9-s8=a9=a1+8d由以上三式可知,等差数列an为递减数列(d由a9-s6=3a1+21d=3(a1+7d)=0,可知,s6=s9,因此①错误。

s60
S7=S8,∴ a8=S8-S7=0
S9